Search This Blog

Unit conversions and physical constants

Converting between disparate units of measurement is the bane of many science students. The problem is worse for students of industrial instrumentation in the United States of America, who must work with British (“Customary”) units such as the pound, the foot, the gallon, etc. Worldwide adoption of the metric system would go a long way toward alleviating this problem, but until then it is important for students of instrumentation to master the art of unit conversions1.
It is possible to convert from one unit of measurement to another by use of tables designed expressly for this purpose. Such tables usually have a column of units on the left-hand side and an identical row of units along the top, whereby one can look up the conversion factor to multiply by to convert from any listed unit to any other listed unit. While such tables are undeniably simple to use, they are practically impossible to memorize. The goal of this section is to provide you with a more powerful technique for unit conversion, which lends itself much better to memorization of conversion factors. This way, you will be able to convert between many common units of measurement while memorizing only a handful of essential conversion factors.
I like to call this the unity fraction technique. It involves setting up the original quantity as a fraction, then multiplying by a series of fractions having physical values of unity (1) so that by multiplication the original value does not change, but the units do. Let’s take for example the conversion of quarts into gallons, an example of a fluid volume conversion:
35 qt = ??? gal
Now, most people know there are four quarts in one gallon, and so it is tempting to simply divide the number 35 by four to arrive at the proper number of gallons. However, the purpose of this example is to show you how the technique of unity fractions works, not to get an answer to a problem. First, we set up the original quantity as a fraction, in this case a fraction with 1 as the denominator:
35 qt / 1
Next, we multiply this fraction by another fraction having a physical value of unity, or 1. This means a fraction comprised of equal measures in the numerator and denominator, but with different units of measurement, arranged in such a way that the undesired unit cancels out leaving only the desired unit(s). In this particular example, we wish to cancel out quarts and end up with gallons, so we must arrange a fraction consisting of quarts and gallons having equal quantities in numerator and denominator, such that quarts will cancel and gallons will remain:
(35qt / 1) (1gl / 4qt)

No comments:

Post a Comment

Dont paste link here..